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A numerical method is developed for computing steady supercritical flow about an 
ellipse at zero angle of attack. The flow is assumed to be two-dimensional, inviscid, 
isentropic and irrotational. The free-stream Mach number lies in the high subsonic 
range so that a shock wave occurs locally near the body. The full potential equations 
are solved by Telenin’s method and the ‘method of lines’. Smooth interpolating 
functions are assumed for the unknown flow variables in selected co-ordinate direc- 
tions. The resulting set of ordinary differential equations is then integrated away 
from or along the body depending upon whether the flow is smooth or disoontinuous. 
Jump conditions of the governing equations are applied across the shock wave so that 
it is perfectly sharp. A doublet solution for flow past a closed body is used as the far- 
field boundary condition. Supercritical flow calculations have been Frformed for 
ellipses with thickness ratio of 0.2 and 0.4 at various free-stream Mach numbers. The 
present results are compared with the shock-capturing method, and good agreement 
is obtained. 

1. Introduction 
Within the past decade there has been strong interest in transonic flow research. 

The fact that commercial jets often fly at transonic speeds makes it very desirable to 
have methods which can predict airfoil lift and drag in this flow regime. 

The flow is called transonic if both subsonic and supersonic regions are present in 
the field. Although most airplanes fly at  subsonic speeds, the local flow velocities often 
become supersonic at the top of the wing. In  a typical transonic flow field, the embedded 
supersonic region is usually terminated by means of a shock wave. 

The main difficulties in transonic flow calculations are due to the inherent non- 
linearities of the equations governing transonic flow, and the fact that the equations 
change type within the solution domain, from elliptic in the subsonic region to hyper- 
bolic in the supersonic region. In addition, special provision must be made to handle 
the embedded shock wave in the flow field. 

There are three main categories of numerical methods for solving steady inviscid 
flow past an airfoil in the transonic regime. These are finite-difference methods, the 
hodograph method and interpolation methods. 

Finite-difference techniques have received the most attention in transonic flow 
research in recent years and we now outline them briefly. 

Magnus & Yoshihara (1970) first solved the unsteady Euler equations using an 
explicit second-order difference scheme. Unfortunately, t’he method requires a very 
large amount of computation time to achieve steady-state conditions, and is therefore 
very expensive for practical calhlations. 
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An alternative to the time-dependent approach is the use of relaxation methods. 
Murman & Cole (1 97 1) successfully solved the transonic small-disturbance equations 
by introducing a mixed finite-difference system. The direction of differencing is biased 
depending upon whether the flow is subsonic or supersonic. The truncation error of 
the difference scheme has the effect of artificial viscosity, so shock waves appear 
naturally during the course of calculation, although they are usually spread over 3-4 
mesh points. The system of difference equations is solved by successive line relaxation, 
and the computed results agree well with experimental data for a circular arc airfoil. 

The method was extended by Krupp & Murman (1972) to lifting airfoils and slender 
bodies. Steger & Lomax (1972) solved the full potential equations for lifting airfoils 
by successive line over-relaxation (SLOR). An interactive graphic terminal is used to 
change the values of circulation and relaxation parameters as the relaxation is pro- 
ceeding. To account for flows not aligned to the co-ordinate system, Jameson (1974) 
introduced a rotated differencing scheme in which the direction of upwind differencing 
is rotated to conform with the local flow direction. The system of difference equations 
is then iterated by simulating an artificial time-dependent equation. Ballhaus, Jameson 
& Albert (1 978) developed an implicit approximate factorization (AF) algorithm for 
the solution of steady-state transonic small-disturbance equation, which has a much 
better rate of convergence than the SLOR algorithm. Following the idea of Jameson’s 
rotating upwind difference scheme, Holst & Ballhaus (1979) solved the full potential 
equation in conservation form to ensure conservative shock capturing. Artificial 
viscosity is added implicitly by retarding the density according to local Mach number. 
Holst (1979) later applied the method using an arbitrary mesh, and obtained good 
agreement with independently computed results. 

The hodogreph method has a long history in transonic flow calculations, taking 
advantage of the property that the governing equations of plane motion become linear 
when co-ordinates in the physical plane are replaced by the velocity components as 
independent variables. Using the hodograph transformation, Nieuwland ( 1967) 
developed a technique for computing shock-free, symmetrical, supercritical flows 
about quasi-elliptic airfoil sections. The method was later extended by Boerstoel 
(1967) to present a catalogue of solutions for certain body shapes. Bauer, Garabedian 
& Korn (1972) also used the hodograph method to generate a shock-free flow with the 
corresponding boundary shapes. 

The final category of the methods makes use of quasi-analytic techniques. These 
are the ‘method of integral relations’ (MIR), Telenin’s method and the ‘method of 
lines ’ (see Holt 1977). Each approach uses smooth interpolating functions to represent 
the unknown variables in a selected co-ordinate direction. The partial differential 
equations are thereby reduced to a set of ordinary differential equations along a set 
of rays in the flow field. The resulting equations are then solved as an initial-value 
problem. 

MIR was first applied by Chushkin (1958) for subsonic critical flow past an ellipse 
or ellipsoid. Later, Holt & Masson (1971) computed supercritical flow about cylinder 
with the full potential equations. Tai (1 974) also used MIR to solve the steady Euler 
equations for a lifting airfoil. Both of the above methods located a shock point on the 
body, but no details about the shape of the shock in the interior of the flow field are 
obtained. 

Chattot (1978) applied Telenin’s method in the hodograph plane for flow past a 
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double wedge. A shock is fitted in the flow field to eliminate the limit lines. The com- 
plete shock location is obtained, but the method is restricted to a double wedge, where 
the boundaries in the hodograph plane are known in advance. Telenin’s method was 
also used by Gross & Holt (1976) to calculate critical and supercritical shock-free flow 
past ellipses. 

In  the present work supercritical flow past an ellipse at zero angle of attack is 
calculated. The steady two-dimensional full potential equations are solved by Telenin’s 
method and the method of lines. The jump conditions of the equations are used to 
fit a shock in the flow field to terminate the supersonic region. The formulation of the 
equations of motion and the details of the transonic flow field are discussed in $2.  
Applications of Telenin’s method and the method of lines to the supercritical flow 
problem are described in $ 3. Section 4 contains discussions of the supercritical calcula- 
tions. The conclusions are presented in 3 5.  

2. Formulation of the problem 
We consider the two-dimensional flow of a uniform stream past an ellipse. The free- 

stream Mach number lies in the high subsonic range so that, while the flow in the 
region far from the ellipse is wholly subsonic, the flow field in the neighbourhood of 
the ellipse is of mixed type with subsonic regions near the forward and rear stagnation 
points and a local supersonic region near the maximum thickness section of the ellipse. 
The local supersonic region is usually bounded by a shock wave at its downstream end. 
A typical flow pattern is shown in figure 2 (b). 

Viscosity effects are confined to the boundary layer near the surface of the ellipse. 
The boundary-layer calculations will be carried out subsequently since these require 
knowledge of the inviscid flow field as a starting point. The shock terminating the local 
supersonic region causes the boundary layer to separate so that the inviscid and viscous 
flows interact significantly. However, the main influence of boundary-layer separation 
is to introduce an effective thickening of the ellipse downstream of the shock. Inter- 
action effects are therefore determined by integrating the inviscid and boundary-layer 
equations separately and matching the calculations along the effectiveviscous-inviscid 
boundary. 

The shock wave introduces entropy changes on its downstream side. Provided that 
the minor-axis-major-axis ratio (maximum thickness ratio) of the ellipse is sufficiently 
small and provided that the free-stream Mach number is subsonic, the local Mach 
number ahead of the shock wave will not exceed the value 1-3. The shock wave strength 
is then sufficiently small to ensure that entropy changes can be neglected. 

To verify this statement we use the following perfect-gas relationship to determine 
entropy changes across a shock wave: 

Here, M is the incident Mach number (just upstream of the shock), y the rat,io of 
specific heats, R the gas constant, and A S  the change in entropy. If M = 1-3 and 
y = 1.4, then 

(2.2) _ -  As - 0.0208. 
R 
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Equation (2.1) can be rewritten as 

Kon-Ming Li and M .  Holt 

where r, is the pressure and p the density. Subscripts 1 and 2 denote conditions ahead 
of and behind the shock, respect,ively. 

From equation (2.2) 

[exp e)]('-') = 1.0084. 

It follows that for shocks with incident Mach numbers M < 1-3 the error introduced 
by the isentropic assumption is about 0.8 yo. We can therefore assume, in the present 
analysis, that the flow field is isentropic and irrotational. 

2.1. Equations of motion 
We consider steady, two-dimensional flow of a uniform air stream past an ellipse at  
high subsonic free-stream Mach numbers. The flow is assumed to be inviscid and 
irrotational. The governing equations of motion are then: 

Coniinuity div (pq) = 0; (2.6) 

Irrotationulity curl(q) = 0. (2.6) 

Writing these equations in elliptic co-ordinates : 

The elliptic co-ordinates 6 and 7 are defined by (Milne-Thomson 1972): 

x = c cosh E cos 7, y = c sinh 6 sin 7, (2.9), (2.10) 

where x and y are Cartesian co-ordinates, c is a constant, u and v are the velocity 
components in the 6 and 7 direct.ions, respectively, and h is the metric coefficient 
given by: 

(2.11) 

It can be shown that curves of constant f ;  represent confocal ellipses and curves of 
constant 7 confocal hyperbolae. The foci of the ellipses or hyperbolae are located at  
( f c ,  0) .  Some curves of the elliptic co-ordinate system with c = 1 are plotted in 
figure 1. 

h = c(sinha 6 + sin2 7)J. 

The final equation to complete the set is Bernoulli's equation: 

H + & q 2 =  H ,  = 8qLax. (2.12) 

The quantity H is the enthalpy (per unit mass), q is the flow speed, qmax the maximum 
steady expansion speed, and the subscript 0 denotes stagnation conditions. Equation 
(2.12) may be written 

(2.13) 
H 
H, = 1- (&J 

For a perfect gas with constant specific heats 

(2.14) 
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FIGURE 1. Elliptic 00-ordinates in the first quadrant with foci located 8t ( f 1, 0). 

By further assuming isentropic flow 

it follows that 

Substituting equation (2.16) into (2.13) and solving for p/po, we obtain 
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(2.15) 

(2.16) 

(2.17) 

The three equations (2.7), (2.8) and (2.17) are the three relations required to deter- 
mine the three basic unknowns u, v and p. 

We now express all variables in dimensionless form by dividing distances by c, 
velocities by qmaX, and the density by the stagnation density po. Retaining the same 
symbols for the non-dimensional variables, the equations of motion are 

and 

(2.18), (2.19) 

(2.20) 

(2.21) 

z = coshccosq, y = sinhcsinv. (2.22), (2.23) 

2.2. Description of the $ow field 
Before we proceed to solve the equations of motion, it is advantageous to understand 
the physical flow field and be able to choose an effective method to solve the problem. 
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FIQURE 2. (a) Unstable supercritical shock-free flow field and (a) typical supercritical flow field. 

At very low Mach numbers, the compressibility is very small, hence the flow can 
be assumed to be incompressible. The analytic solution for incompressible flow past 
an elliptic cylinder (Milne-Thomson 1972) is given by 

u = -eefocos7sinh,(t-to), u, v = -3e~osin7cosh(t- to) ,  (2.24), (2.25) 
h h 

where U, is the free-stream velocity and 5, the ellipse representing the body of the 
cylinder. On the body, the normal component u of the velocity is zero, and the tan- 
gential velocity is given by equation (2.25). It can be seen that the flow accelerates 
from stagnation at the leading edge (7 = n) to a maximum speed at the apex of the 
cylinder (7 = in), and then decelerates back to stagnation at the trailing edge (7 = 0). 
At zero angle of attack, the flow is symmetric about both the y axis and the x axis. 

As the free-stream Mach number is increased, compressibility effects become more 
important, and the compressible equations of motion have to be solved. However, the 
flow behaviour remains qualitatively the same if the flow is subsonic throughout the 
field. When the maximum local Mach number reaches the value 1.0, the flow is said to 
be critical. The free-stream Mach number which produces such a flow is called the 
critical free-stream Mach number. 

For supercritical flow, a small supersonic region is embedded in the subsonic flow 
field. Although shock-free supercritical flows can be produced, they are generally 
unstable (see Busemann 1949; Frank1 1950; Guderley 1953; Morawetz 1956, 1957) in 
the sense that a small perturbation of the body contour in the supersonic region leads 
to a flow that is discontinuous. This will be assumed the case for our transonic flow 
calculation. A typical transonic flow field is depicted in figure 2 (a). 

3. Numerical methods 
Telenin’s method and the ‘method of lines’ are used as the numerical schemes to 

solve the equations of motion. The two methods are very similar. In Telenin’s method 
the variations of the variables in one co-ordinate direction are represented by some 
smooth interpolating functions. In our problem, symmetry conditions suggest the use 
of Fourier series of the form : 

N N--2  

u ( t , y )  = a,(()cos(i- l ) q ,  v( f ; ,q )  = -E-bi(LJt3in@, (3.1), (3.2) 
4=1 i = l  
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where N is the number of rays. Along the j t h  ray 
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(3.3) 

The coefficient a, can be obtained by inverting the matrix {cos (i - 1) vj), 

(3.4) 
N 

j = l  
ar = Aijuj, i = 1, ..., N, 

where {AU} = {cos(j - 1) &}-I. Equation (3.1) is differentiated to obtain the 7 deriva- 
tives, giving 

N (2) =%= a~( t ) ( l - i ) s in (~ - l )71 .  (3-5) 
1 a7 i = l  

Substituting equation (3.4) into (3.5) yields 

Interchanging the order of operation, 

Similarly, for the derivative of v 

where 
N N - 2  

4, = C Atj(l-i)sin(i-l)ql, Glr = 2 B,,icosiq,, (3.9), (3.10) 
f = l  i=1 

and where 
{Bg,} = {sin i~$+~}-l. (3.11) 

In  the ‘method of lines’, the 7 derivatives are approximated by finite differences. 
Three-point or five-point difference schemes are used depending on the order of 
accuracy required. The derivative representation has the same form as given by (3.7) 
with coefficients Fr3 derived from Taylor series expansions. Hence in terms of the 
solution method and accuracy, we may consider the two methods to be equivalent. 

It is convenient to have expressions for av/ag and au/a& From equation (2.19) 

ah av ah au 
a5 a5 a7 a7 

v-+h- = u-+h-. 

Solving for av/ag: 

The definition of h implies that 

The above expressions are substituted into (3.13) to give 

(3.12) 

(3.13) 

(3.14), (3.15) 

(3.10) 
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From equations (2.18) and (2.20), we obtain 
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and 

Substituting (3.18) into (3.17) and solving for &/at, gives 

(3.17) 

(3.18) 

(3.19) 

where 

, (3.20) 2h2 

Q1 = (y-l)(l-v2)-((Y+l)u2. (3.21) 

Substitution of expressions (3.7) and (3.8) into (3.16) and (3.19) results in a system of 
(2N - 2) ordinary differential equations that can be integrated simultaneously in the 
5 direction, along N rays of constant 7. 

3.1. Boundary conditions 

Boundary conditions have to be prescribed in order to specify the problem uniquely. 
On the body, we require that normal velocity be zero, that is 

u = 0 for 6 = go, (3.22) 

where go is the elliptic co-ordinate of the body. For flow past an elliptic cylinder at 
zero angle of attack, the flow field is symmetric about the x axis, so 

(3.23) 
.au 
arl 

Finally, the flow approaches that of a uniform free stream at infinity: 

v = 0, - = 0 for 7 = 0, n, 

u + U , c o s ~ ,  v+ -Urnsinq as [+GO. (3.24) 

However, in practice, it is more convenient to specify the far-field boundary condi- 
tions at  a finite distance from the body. Following Murman & Cole (1971), an analytical 
solution for the far field is derived using transonic small-disturbance theory. The basic 
transonic equation is 

[KdZ - Hr + 1) @Iz + dpfi = 0 (3.26) 

with the variables and parameters defined by 

IJ = 8 h ~ ,  K = (1  -ill:)/&#, (3.26), (3.27) 

(3.28), (3.29) 
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and the perturbation velocities are 

9: = 4x9 q; = 4%. (3.30) 

Here bis the thickness ratio of the airfoil (or ellipse), M ,  the free-stream Mach number, 
qz and q,, axe the velocity components in the x and y directions, respectively. 

We rewrite equations (3.25) in the form 

L4 = W X Z  + 4;s = H Y  + 1) (u2Iz. (3.31) 

Applying Green's formula for L in the upper half-plane and allowing for a shock jump 
in the flow field, we obtain the basic integral equation 

The far field is thus that of the usual doublet for a closed body 

D 2 
4(X,y l )  = ~4(x2+Q2)+.'.' 

where the doublet strength is 

-1 

(3.32) 

(3.33) 

(3.34) 

The doublet strength consists of the usual term proportional to the airfoil volume 
and a nonlinear contribution, unknown in advance. In the numerical procedure D 
has to be calculated as one of the unknowns of the problem. Differentiating equation 
(3.33) gives 

The flow velocities expressed in the and q directions are given by 

(3.38) 

Substitution of equations (3.28) and (3.29) into (3.37) and (3.38) gives the necessary 
boundary conditions in the far field. 

3.2. Jump cond&0%8 

For transonic flow at sufficiently high, subsonic, free-stream Mach number, the flow 
becomes supercritical. A region of local supersonic flow is developed over the maximum 
thickness region of the body and this is terminated on the downstream side by a shock 
wave. In the inviscid flow approximation, the shock wave is modelled by a jump 
discontinuity in the solution. To ensure uniqueness, we require that entropy increases 
across the shock wave. For the full potential approximation, the entropy change is 
assumed to be negligible. Uniqueness is attained by allowing only the existence of 

1 
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compression shocks, but not expansion shocks. The jump conditions for the full 
potential equations are different from the usual Rankine-Hugoniot relations, and can 
be derived by writing the equations of motion in conservation form. Applying the 
two-dimensional form of the divergence theorem to equations (2.18) and (2.19), we 
obtain 

and 
(3.40) 

where ( ) denote a jump in the quantity across the shock and subscript 8 denotes an 
element in the shock surface. Equations (3.39) and (3.40) can be rewritten as 

(3.41), (3.42) 
where 

( P h )  (4% - ( P h )  ( d o ,  = 0, (3.39) 

(vh) (W, + (uh) w, = 0, 

(pub) 7: - (pvh) = 0, (vh) 7: + (uh) = 0, 

7: = (2) (3.43) 

is the shock wave angle. In equations (3.41) and (3.42) his the metric coefficient which 
depends only on the geometry of the co-ordinate system and is continuous throughout 
the field, and hence can be eliminated from (3.41) and (3.42). The final form of the 
jump conditions is then 

Equations (3.44) and (3.45) represent, respectively, the conservation of mass flux and 
continuity of tangential velocity across the shock wave. The density p in (3.44) is 
given by Bernoulli’s equation (2.20). Thus the jump conditions for the full potential 
equations are completely specified. 

It is interesting to compare the shock-fitting and shock-capturing methods. In the 
finite-difference treatment of supercritical flow, artificial viscosity is added to the 
differential equations as a result of the truncation errors generated by the difference 
equations. No explicit jump conditions are needed, provided that the equations are 
written in divergence form to conserve mass flux. Shock waves evolve naturally during 
the course of the calculation, although they usually spread over several mesh points. 
In principle, the shock wave can be made arbitrarily sharp by refining the mesh points 
near to it; however, this will slow down the rate of convergence considerably. By 
employing a shock-fitting technique, the jump conditions are satisfied exactly. The 
shock wave is perfectly sharp, hence no refinement is necessary. The drawback of this 
method is that the iteration may not converge if the initial guess of the shock location 
is too inaccurate. 

3.3. Singular p i n t s  
At the beginning of 93, we assumed a Fourier series representation in the 7 direction 
for the unknown flow quantities, and, as a result, derived a set of &st-order ordinary 
differential equations (equations (3.16) and (3.19)) in the 6 direction. However, it is 
also possible to assume an analytic representation in the 6 direction and obtain a set 
of ordinary differential equations in the 7 direction. The advantages and disadvantages 
of each formulation will become apparent at a later stage. 

For the latter formulation, we must derive expressions for au/aq and av/a7. Re- 
arrangingequations (2.18) and (2.19), and solving for %/a7 and au/av, we obtain 

(PU) 7;- (pv) = 0, (v)  7:+ ( u )  = 0. (3.44), (3.45) 

(3.46), (3.47) 
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au u sinh 26 w sin 271 -+ +-), 2h2 (3.48) 

Q2 = (y  - 1) ( 1 - U2) - (y  + 1 ) 21%. (3.49) 

When equations (3.16) and (3.19) are examined in detail, it is observed that they 

( y - 1)  ( 1 - w2) - (y  + 1) u2 = 0.  (3.50) 

have a saddle-point singularity when the denominator Q1 becomes zero, that is, 

After rearranging, we obtain 

which represents an ellipse in the u, w plane. From Bernoulli’s equation, 

(3.51) 

(3.52) 

so the non-dimensional critical velocity q* is 

!z*2= (Y - W Y  + 1). (3.53) 

On substituting equation (3.53) into (3.51), the ellipse of singularities may be written 
as 

us 212 -+- = 1. 
q*2 1 

(3.54) 

The singular ellipse and the sonic circle are both plotted in figure 3(a). We can see 
that all points on the ellipse lie outside the sonic circle, except for w = 0,  u = & q*. For 
critical flow, only one point is on the sonic circle, namely u = 0, v = & q*, therefore 
there are no singularities for a critical-flow calculation when integrating away from 
the body. It is apparent that no singularities will be encountered even for supercritical 
flow calculations. 

On the other hand, using the second formulation and integrating in the 7 direction, 
the denominator of (3.47) becomes zero when 

(y  - 1)  ( 1 - u2) - (y  + 1) w2 = 0. (3.55) 

Hence the singular ellipse in the u, w plane is given by 

(3.56) 

which is shown in figure 3 (b). But any critical or supercritical flow has a point on the 
body with u = 0 and w = - q*, which is a point on the ellipse given by (3.56). Therefore 
it is obvious that integration in the 7 direction always leads to at least one singularity 
at  sonic points on or near the body. 

3.4. Implententalion of the numerical scheme 
As discussed in the preceding section, saddle-point singularities will arise if we assume 
interpolating functions in the 5 direction. Hence it will be appropriate to use the first 
formulation given at the beginning of 93. Expressions (3.7) and (3.8) are substituted 
into (3.16) and (3.19) to form a set of ( 2 N - 2 )  simultaneous ordinary differential 
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V 

4 
Singular ellipse 

Sonic circle 
\ 

* U  

(4) ( b )  

FIQURE 3. Singular ellipse for (a) first formdetion end ( b )  second formulation. 

equations. At 6 = go, the flow tangency condition on the body is given by (3.22). An 
initial estimate of values of the tangential velocities vo on the surface is made, and, 
using these as initial data, the equations are integrated away from the ellipse 6 = &. 
A variable-step, fifth-order Runge-Kutta method is used to integrate the differential 
equations. The integration is terminated a t  a distance sufficiently far away from the 
body, say 6 = tm, which will be defined later. The velocities v calculated at are then 
compared with the far-field velocities given by (3.38). If the two sets of values differ, 
tangential velocities on the surface are then adjusted and the integration is repeated. 
The procedure is repeated until the far-field solution converges. This can be done very 
efficiently by the use of Powell’s method (Powell 1964)) which minimizes the sum of 
squares of the differences between the far-field velocities by adjusting the surface 
velocities. The iteration is terminated when the sum satisfies the specified tolerance. 

Gilinskii, Telenin & Tinyakov (1964) pointed out that solving a Dirichlet problem 
as a Cauchy problem is inherently unstable with respect to the prescribed data. This 
phenomenon is known as Hadamard instability. Jones, South & Klunker (1972) also 
encountered Hadamard instability in applying the ‘method of lines ’and found growth 
in error proportional to exp ( N t ) ,  where N is the number of rays and 6 the direction 
of integration. As a consequence, the number of rays and the far-field distance have 
to be restricted. However, if we wish to obtain a solution with reasonable accuracy, 
we must employ a sufficient number of rays to represent the variables. The occurrence 
of a shock wave on the body makes it even more desirable to have a detailed repre- 
sentation near the body. 

To overcome the above difficulties, we propose to solve the problem in two stages. 
In  the first stage, a very coarse representation of the variables is used, which enables 
us to integrate the equations away from the body to the far field without instability 
problems. A supercritical shock-free flow is obtained from this calculation. However, 
as discussed in $2.2, shockless flows are known to be unstable and not likely to occur 
in practical situations. Hence, in our supercritical flow calculation, we always assume 
that the flow is discontinuous. In  order to model the shock wave, we have to treat the 
region near the body in a different manner. The procedure for the different stages is 
described in the following sections. 
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(a)  Coarse solution 
In this stage, we assume Fourier series representation of the form (3.1) and (3.2) for 

u and w. For flow over an ellipse, we further notice that the flow is symmetric about the 
y axis when the solution is smooth. Thus we can economize on the number of rays by 
assuming series of the form: 

N - 1  N - 1  
u ( 6 , ~ )  = -x a4(5)cos(2i-l)7, w(5,r) = -x-bg(g)sin(2i-l)7.  (3.57), (3.58) 

f = l  f = l  

So for the coarse solution, we only need t.0 compute the flow in the second quadrant. 
Equations (3.16) and (3.19) are integrated simultaneously from 6, to &,. Boundary 
conditions are satisfied by using the procedure described in $3.4. At supercritical 
Mach number, a continuous flow with a small embedded supersonic zone is obtained, 
and is depicted in figure 2 (a). 

(b)  Refined solution near the body 

Although the coarse solution does not have enough accuracy to resolve the shock 
wave which occurs near the body, it provides a fairly good representation of the flow 
field away from the body where the flow is smooth. The strategy here is to use a larger 
number of rays to represent the flow field close to the body; the coarse solution at an 
intermediate value of 6, say &, is used as the outer boundary condition for the refined 
solution near the body. In  this way, the distance in the direction is kept small and a 
larger number of rays can be used without causing instabilities. 

It is advantageous to integrate the equations in the 7 direction if we wish to fit a 
shock in the flow field. Following the idea of Fletcher (1975), we divide the region near 
the body into two parts. The forward part is enclosed by 6 = f,, 6 = &, 7 = ?r, and 
7 = q4, and the rear portion by 5 = to, 6 = tr, 7 = qt and 7 = 0, which we shall call 
region 1 and region 2, respectively. The configurations are shown schematically in 
figures 4 and 5. gr is chosen such that the point (&,q4) is at the top of the sonic line 
(see figure 2a).  In  our case, qr = +?r. 

In  region 1, finite-difference formulae of the form (3.7) and (3.8) are used to calculate 
the derivatives in the 7 direction. The ordinary differential equations (3.16) and (3.19) 
are integrated as in the coarse calculation. No boundary condition is required on 
7 = in; since there is no influence from downstream in a supersonic region, smooth 
transition through the sonic line will be sufficient for uniqueness. Tangential velocities 
on the body are adjusted so that velocities v a t  6,: match those of the coarse calculation. 
Five rays have been used in this region without encountering stability problems. 

In region 2, derivatives in the 6 direction are calculated by finite-difference formulae 
of the following form: 

(3.59), (3.60) 

where M is the number of rays, El( and H,i are matrices obtained by Taylor series 
expansion. Expressions (3.59) and (3.60) are substituted into (3.46) and (3.47) to form 
a set of ordinary differential equations. At 7 = &r the converged solution from region 
1 is used as the initial condition to integrate the equations from 7 = +?r to 7 = 0. A t  
7 = 0, the symmetry condition w = 0 is imposed. However, in the supersonic region 
the flow has no forewarning of the downstream conditions and the flow will not be 
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= +U 

FIGURE 4. Integration in region 1 (a )  in the physical plane and ( b )  in tho 6, 7 plane. 

( b )  

“ t  f Shock 

€0 v = O  €i 

FIGURE 5. Integration in region 2 (a) in tho physical plane and ( b )  in the c, plane. 

able to adjust to satisfy symmetry conditions at  r ]  = 0. Physically, the supersonic 
region is terminated by a shock wave; the subsonic region behind the shock wave is 
subsequently compressed to satisfy the boundary condition downstream. To account 
for the embedded shock wave, the equations are integrated to an intermediate value 
of 7, say r]&), across which jump conditions (3.44) and (3.45) are applied. The integra- 
tion is then resumed and carried out until r ]  = 0 is reached. Powell’s method is used to 
adjust the shock location qSuntil v becomes zero on r] = 0. The location of the shock is 
specified by its location on the surface and the shock slope on other rays. It is known, 
apriori, that the local shock shape must be normal to the surface in order to preserve 
the boundary condition of zero normal flow at the surface. 

By splitting the solution domain near the body into two parts, we have been able to 
integrate the equations of motion in different directions. In the rear part we chose to 
integrate the equations in the r ]  direction so that a shock can be fitted in the flow field. 
Since the flow is supersonic ahead of the shock and subsonic behind (at least when 
boundary-layer int,eraction effects are not considered), no saddle-point singularity is 
encountered; thus the integration can be carried out without difficulty. As a word of 
caution, we note that the shock wave does not extend all the way from the surface to 
6 = (see figure 2b) .  If we use a large number of r a p ,  the rays of constant 6 with 
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values close to ti will pass through the sonic line and will cause difficulty if we try to 
integrate through this line. TheIefore care must be taken to ensure that no rays pass 
through the sonic line. 

After a converged solution for region 2 is obtained, the doublet strength D will be 
re-calculated, and the whole procedure repeated. The solution is considered to have 
converged globally when the values of D at successive iterations agree to within the 
prescribed tolerance. 

( c )  Powell’s method 

To complete the description of our numerical scheme, we shall describe Powell’s 
method briefly; a more detailed analysis can be found elsewhere (see Powell 1964). 
The method minimizes 

5 4 (3.61) 

with respect to Fl, Fa, ..., FM ( M  < N), where the N functions ei are nonlinear func- 
tions of the M unknowns Fj. The method is essentially that of least-square minimiza- 
tion in which Ze! is minimized by making changes to F, according to the direction 

i=1 

SF given by 

i =  1,2 ,..., M .  (3.62) 
M 

New values of F are given by 
F = FOld+A6F, (3.63) 

in which A is chosen (by search) such that Xef is minimized along the direction 6F. 
During the search along SF to locate the minimum, functions 8% have to be evaluated 
at  different values of A; thus one can calculate the rate of change of et along the 
direction 6F at the new minimum point by finite differences. Powell shows how these 
partial derivatives can be used in conjunction with previous values of 8 e k / 8 q  to  
determine values for the next step given by (3.62). 

In  principle the method guarantees convergence since a step is taken only when 
Ze: decreases. It also has quadratic convergence provided one is sufficiently near the 
solution and eg = 0 at the minimum. 

4. Results and discussion 
The algorithm introduced in the previous section is evaluated in this section by 

presenting a range of numerically computed solutions. Ellipses with thickness ratio 
8 = 0.4 and 6 = 0.2 are chosen for the test cases. Free-stream Mach numbers are 
assumed to be high enough so that a shock wave will always occur. Gross & Holt (1976) 
reported critical flow for 6 = 0.4 a t  M ,  = 0487. Symmetric, supercritical, shock-free 
flows were obtained up to M m  = 0.644. A range of free-stream conditions has been 
chosen for our computations. For thickness ratio 8 = 0.4, free-stream Mach numbers 
were chosen to be 0.65, 0.66, 0.67 and 0.68. For 8 = 0.2, M, = 0-77. 5, is assumed to 
be 2.5, which was found to be sufficiently large by Grow & Holt (1976). Three rays are 
used for the coarse calculation. When four rays are used, the solution tends to oscillate 
in the 6 direction at large 6,  which is due to the instability discussed in $3.4. For 
region 1 of the refined calculation, five rays are used without encountering instability 
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FIGURE 6. Surface velocity distribution, 8 = 0.4, M ,  = 0.06. --, present method; 
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FIGURE 7. Surface velocity distribution, 8 = 0.4, M ,  = 0.66. -- , present method: 
_-- , Holst method. 

problems. However, for region 2 of the refined calculation, only three rays can be used. 
Besides the instability problem, there are possible singular points in the ordinary 
differential equations depending on whether or not the rays pass through the sonic 
points. This is because the shock does not extend all the way out to 6 = &; typically, 
the top of the shock is located at approximately two-thirds of the distance between 
5, and Ei. It follows that the use of more than three rays will cause at least one ray to 
pass through the sonic point, which is hazardous when integrating in the 9 direction. 

The present results are compared with calculations using the shock-capturing 
method of Holst (1979) and are shown in figures 6-10. For b = 0.4, at M m  = 0.65, 
0.66 and 0.67, the two methods agree very well, with the shock locations on the body 
almost identical. The surface velocity profiles obtained by both methods show similar 
characteristics. The flow undergoes a small compression before the shock wave is 
encountered. Behind the shock, a small post-shock expansion wave is observed, after 
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1) 

FIQIJRE 8. Surface velocity distribution, 6 = 0.4, M ,  = 0.61. - , present method; 
--- , Holst method. 

1) 

FIGURE 9. Surface velocity distribution, 6 = 0.4, M ,  = 0.68. - , present method; 
--- , Holst method. 
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10. Surface velocity distribution using the present method, 6 = 0.2, M ,  = 0.17. 
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FIQURE 1 1 .  Boundary of local supersonic region, 6 = 0.4, M ,  = 0.66. 
, Shock; --- , sonic line. 

FIUURE 12. Boundary of local supersonic region, 6 = 0.2, 111, = 0.77. 
, shock; --- , sonic line. 

which the flow is recompressed back to stagnation condition a t  the trailing edge. The 
two methods show the largest discrepancies near the shock wave; in all the three cases 
tested, Holst’s method consistently obtains a higher maximum velocity on the body 
and shows a steeper pre-shock compression. At M, = 0.64, a solution with an em- 
bedded shock wave could not be obtained by the present method. As can be seen in 
the solution at M, = 0.65, the shock jump is very weak, and it is quite probable that 
symmetric shock-free flows exist for free-stream Mach numbers lower than 0.65. 
However, using Holst’s method, a solution withshock jump is obtained for M ,  = 0.64. 
At M, = 0.68, the solution shows a local Mach number of 1-61 ahead of the shock, the 
isentropic assumption a t  this Mach number will introduce an error of about 4.7 yo 
according to (2.3) and (2.5). Hence any solutions obtained a t  or above this free-stream 
Mach number will be erroneous. 

Owing to the unstable nature of the present method, the round-off error grows as 
exp (NE), where N is the number of rays in the 5 direction. It is difficult to assess the 
accuracy of the method. Nevertheless, good agreement is obtained between the present 
method and the shock-capturing method. The present method takes about 3 seconds 
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to execute on a CDC 7600, whereas Holst’s method takes about 6 seconds for a mesh 
size of 90 x 40. 

Unfortunately, the present method does not guarantee convergence unless the 
initial guess is reasonably close to the converged solution. One remedy is to increase 
the free-stream Mach number by a small fraction at a time, say by 0005, and then 
use the solution obtained for a previous Mach number as an initial guess. Otherwise, 
good judgment and trial and error are needed in providing a good initial guess. 

5. Conclusions 
A composite numerical scheme has been developed which is based in part on Telenin’s 

method and in part on the ‘ method of lines ’.The numerical method has been designed 
to solve for supercritical flow over an ellipse, when the free-stream Mach number is 
high enough to generate an embedded shock wave in the flow field. A fitting technique 
is used to determine this shock so that the Rankine-Hugoniot jump conditions are 
satisfied exactly across the shock wave. 

Good agreement is obtained between the present method and the shock-capturing 
technique. Further improvement in the present method can be achieved by the 
introduction of non-symmetrical flow effects into the solution over the forward part 
of the ellipse. To this end, it is desirable to represent the far-flow-field solution in 
terms of distributed singularities along the major axis of the ellipse rather than in 
terms of singularities all located at  the ellipse centre. 

The work presented in this paper was supported by the U.S. Air Force Office of 
Scientific Research under Grant No. AFOSR-80-0230. 
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